
THE DIFFICULTY OF APPROXIMATING NASH SOCIAL WELFARE
IN ONLINE MATCHING

A PREPRINT

Szymon Snoeck
Applied Mathematics Department

Columbia University
New York, NY 10027

sgs2179@columbia.edu

Christopher En
IEOR Department

Columbia University
New York, NY 10027

ce2456@columbia.edu

Yuri Faenza
IEOR Department

Columbia University
New York, NY 10027

yf2414@columbia.edu

August 2024

ABSTRACT

Consider the problem of vertex-weighted online bipartite matching with respect to a given wel-
fare function. It is well known that there exists an online matching algorithm that is an (1 − 1

e)-
approximation algorithm when the welfare function is the sum of the weights [Aggarwal et al.,
2010]. However, it is show that no constant factor approximation algorithm exists when the welfare
function is the Nash Social Welfare.

1 Introduction
Bipartite matching is a classical problem in economics and computer science theory. Recently, its online vertex-
weighted counter part has received increased attention due to its prevalence in internet advertising and social media
algorithms [Mehta, 2013]. In vertex-weighted online matching, you are given a bipartite graph G(U, V,E) where the
vertices u ∈ U have weights and are known ahead of time. The vertices in v ∈ V are revealed one-by-one and each
must be irrevocably matched to at most one vertex in U upon arrival. The goal is to maximize a given welfare function
of the weights of the matched vertices in U .

Karp et al. [1990] was the first to study this problem and gave a beautiful result proving that there exists a
(
1− 1

e

)
-

approximation algorithm when all weights are equal and the welfare function is the utilitarian social welfare function—
the sum of the weights. Moreover, they show that this algorithm is optimal. Aggarwal et al. [2010] adapted Karp et al.
[1990]’s algorithm to the case of arbitrary weights, showing that that it retains the

(
1− 1

e

)
-approximation factor.

Even more recently, there has been growing interest in vertex-weighted bipartite matching with respect to the Nash
Social Welfare (NSW)—the geometric mean of the weights [Jain and Vaish, 2023][Gokhale et al., 2024]. This interest
is motivated by the “unreasonably fairness” of the maximum NSW solution in the context of partitioning indivisible
goods among a group of players, i.e. many-to-one bipartite matching, [Caragiannis et al., 2019]. The NSW seemingly
strikes a nice middle ground between maximizing the sum of the player’s utilities and maximizing the minimum
player’s utility. In particular, Caragiannis et al. [2019] showed that the maximum NSW solution is Pareto optimal and
envy-free up to one good, meaning that any envy between two players is resolved by swapping just one good.

In general, it is not possible to have a polynomial time algorithm that approximates the maximum NSW solution of a
many-to-one bipartite matching problem with an approximation factor arbitrarily close to 1 [Garg et al., 2017] [Garg
et al., 2019]. That said, there still exists several constant factor approximation algorithms under various settings of the
problem [Garg et al., 2023] [Barman et al., 2017].

Given that there exists constant factor approximation algorithms for many-to-one bipartite matching with respect to
NSW and for online vertex-weighted bipartite matching with respect to the utilitarian social welfare function, one
might reasonably hope that there also exists a constant factor approximation algorithm for online vertex-weighted
bipartite matching when the welfare function is the NSW. However, this turns out not to be the case:

Theorem 1 (informal). There does not exist a vertex-weighted online bipartite matching algorithm that is a constant
factor approximation algorithm of the maximum Nash Social Welfare solution.

The Difficulty of Approximating Nash Social Welfare in Online Matching A PREPRINT

Thus, attempts to do online matching with respect to the NSW are doomed to fail. This poses a serious roadblock
to improving the fairness of online bipartite matching and begs the question: are there fairness guarantees associated
with the NSW which are not achievable in an online setting?

2 Formal Statement and Proof of Theorem 1
Let G(U, V,E, {wu}u∈U) denote a vertex-weighted bipartite graph where all vertices u ∈ U have associated weight
wu ∈ R.

Consider the following problem: there is a bipartite graph G(U, V,E, {wu}u∈U). The vertices u ∈ U and their
weights1 wu ≥ 1 are known a priori, while the vertices v ∈ V and their edges are revealed in an online fashion. When
each vertex v ∈ V arrives, it must be irrevocably matched to one of its neighbors in U . The goal is to maximize the
geometric mean, i.e. Nash Social Welfare (NSW), of the weights of the matched vertices in U . More formally:

Definition 1. Fix G(U, V,E, {wu}u∈U) and some matching E′ ⊂ E. Let the matching be identified by m : U →
V ∪ {0}, an injective function such that for all (u, v) ∈ E′, m(u) = v and for all u unmatched, m(u) = 0. Then, the
Nash Social Welfare of the matching is:

NSW(m) =

 ∏
u∈U s.t. m(u)̸=0

wu

 1
|U|

.

Fix some algorithm and a graph G(U, V,E, {wu}u∈U), let m∗
G : U → V ∪ {0} denote the matching that maximizes

the NSW on the graph and let malg
G : U → V ∪ {0} be the matching produced by the online algorithm. The ability of

an algorithm to approximate the maximum NSW across all possible graphs is measured by the competitive ratio:

Definition 2. Fix n ∈ N. The competitive ratio of an algorithm is defined as:

CRn = inf
G(U,V,E,{wu}u∈U) s.t.

|U | = n and arrival order of V

NSW(malg
G)

NSW(m∗
G)

.

If the algorithm is random, NSW(malg
G) is replaced by E[NSW(malg

G)].

Now we can formally state Theorem 1:

Theorem 1. For all even n ∈ N:

sup
algorithm

CRn ≤ 1

n1/8
+

log(n)2

32n
.

Thus as n → ∞, the CRn → 0 for all algorithms.

In other words, the above states that no online vertex-weighted bipartite matching algorithm can approximate the
optimal solution with in a constant factor.

The key idea behind the proof of Theorem 1 is to find a family of graphs such that no algorithm does too well on all of
them. Let k ≥ 1 be some constant to be specified later. As a toy example, consider the set of two graphs, G2, as depicted
in fig. 1. Observe that both graphs have opposite optimal matchings despite appearing to be identical after only seeing
v1. Therefore, no algorithm can do better than to randomly match v1. This is to say that no algorithm will out preform
the random algorithm which matches each vertex to a uniformly chosen neighbor on G2. Let mrand

G : U → V ∪ {0}
denote the matching produced by the random algorithm. Now, we can prove this intuition:

Lemma 1. Fix arbitrary G′ ∈ G2. For all algorithms, infG∈G2 E[NSW(malg
G)] ≤ E[NSW(mrand

G′)].

Proof. Fix some algorithm, A, and the matchings it generates on G2: {malg
G }G∈G2 . Without loss of generality, assume

this algorithm A always matches a vertex if possible. Indeed, any algorithm which willingly leaves a vertex unmatched
trivially satisfies the hypothesis since the matching it produces will match at most one vertex and have a NSW of at
most

√
k. The random algorithm will always match at least one vertex, so on either graph in G2, it must always have

a NSW exceeding
√
k. Thus the hypothesis is satisfied and for the rest of the proof it can be assumed that A matches

vertices whenever possible.

1Note that the weights must be ≥ 1, otherwise matching an edge would reduce the NSW.

2

The Difficulty of Approximating Nash Social Welfare in Online Matching A PREPRINT

𝑢!

𝑢"

𝑣!

𝑣"

𝑤! = 𝑘

𝑤" = 𝑘

𝑢!

𝑢"

𝑣!

𝑣"

𝑤! = 𝑘

𝑤" = 𝑘

Order	of	
Arrival

Figure 1: The set of graphs G2 with each graph’s optimal matching highlighted in blue.

Let m(1)
G : U → V ∪ {0} be the matching returned on G ∈ G2 by the deterministic algorithm that always matches v1

to u1 and tries to match v2 if possible. Let m(2)
G : U → V ∪ {0} be the same except the algorithm starts by matching

v1 to u2. Because our algorithm A always matches whenever possible, it can be expressed as a distribution over these
two deterministic matching strategies. Thus for algorithm A, there exists p1, p2 ∈ [0, 1], p1 + p2 = 1 such that:

inf
G∈G2

E[NSW(malg
G)] = inf

G∈G2

p1NSW(m
(1)
G) + p2NSW(m

(2)
G)

≤ p1EG∈G2
[NSW(m

(1)
G)] + p2EG∈G2

[NSW(m
(2)
G)] ≤ max

i∈{1,2}
EG∈G2

[NSW(m
(i)
G)].

Fix any G′ ∈ G2, than for i ∈ {1, 2}, EG∈G2 [NSW(m
(i)
G)] = E[NSW(mrand

G′)] since taking the expectation over the
graph is equivalent to taking the expectation over the random algorithm’s choice of v1’s match. Thus we get:

inf
G∈G2

E[NSW(malg
G)] ≤ E[NSW(mrand

G′)].

This lemma can be extended to a bound on CR2 by computing E[NSW(mrand
G)] for G ∈ G2. A similar idea is used to

prove Theorem 1:

Proof of Theorem 1. For n even, define Gn to be the collection of all graphs G(U, V,E, {wu}u∈U) such that G is
composed of n

2 disconnected graphs from G2 where the vertices in V of degree 2 arrive before the vertices of degree
1 (see fig. 1), and all weights, wu, have value k =

√
n.

Fix some algorithm A. Since each of the n
2 components of the graphs in Gn are disconnected and independently

picked from G2, we can assume the algorithm never willingly leaves a vertex unmatched via the same argument used
in Lemma 1’s proof. Let M be the set of all deterministic matching strategies on Gn, i.e. all sequences of applying
either m(1)

G or m(2)
G , from the proof of Lemma 1, to each of the n

2 disconnected components from G2. For example,
one strategy a ∈ M would be to alternate applying m

(1)
G and m

(2)
G to the n

2 components as they arrive. The matching
found on G ∈ Gn by some a ∈ M is written ma

G. By assumption A always matches when possible, so, it can be
represented as a distribution, D, over the set of all deterministic strategies, M. Thus:

CRn ≤ inf
G∈Gn

E[NSW(malg
G)]

NSW(m∗
G)

= inf
G∈Gn

Ea∼DM[NSW(ma
G)]√

n
≤ 1√

n
E

a∼DM

[
E

G∈Gn

[NSW(ma
G)]

]
≤ max

a∈M

1√
n

E
G∈Gn

[NSW(ma
G)] =

1√
n
E[NSW(mrand

G′)],

where G′ ∈ Gn is some arbitrarily chosen graph, and the last inequality holds since expectation over G ∈ Gn is equiva-
lent to expectation over the internal choices of the random algorithm. Now all that remains is to bound E[NSW(mrand

G′)].

Observe the following technical fact: for some random variable x supported on [0, 1] and k ≥ 1 it holds that:

3

The Difficulty of Approximating Nash Social Welfare in Online Matching A PREPRINT

E[kx]− kE[x] ≤ 1

2
k log(k)2Var(x).

Indeed d2

d2xk
x = kx log(k)2 ≤ k log(k)2 for x ∈ [0, 1]. Thus, kx − 1

2k log(k)
2x2 is a concave function. By Jensen’s

inequality:

E
[
kx − 1

2
k log(k)2x2

]
≤ kE[x] − 1

2
k log(k)2E[x]2

⇐⇒ E[kx]− kE[x] ≤ 1

2
k log(k)2

(
E[x2]− E[x]2

)
=

1

2
k log(k)2Var(x).

Define the random variable nrand
G as the number of vertices matched by the random algorithm on a bipartite graph G

with a fixed order of arrival. Recall all edges in G ∈ Gn have weight
√
n. Thus:

E[NSW(mrand
G′)] = E[n

nrand
G
2n]

= nE[n
rand
G
2n] + (E[n

nrand
G
2n]− nE[n

rand
G
2n])

≤ nE[n
rand
G
2n] +

1

8

√
n log(n)2Var(

nrand
G

n
).

Where in the last step, the technical fact from earlier is used. Note that on each disconnected component the random
algorithm will match both vertices correctly with 50% probability or connect only one with 50% probability. Hence
nrand is equivalent in distribution to X + n

2 where X is binomial random variable: X ∼ B(n2 , 0.5). Therefore the
above becomes:

= nE[
X+n

2
2n] +

1

8

√
n log(n)2

n2
Var(X +

n

2
) = n

3
8 +

log(n)2

32
√
n

.

Thus:

sup
algorithm

CRn ≤ 1√
n
E[NSW(mrand

G)] ≤ 1√
n

(
n

3
8 +

log(n)2

32
√
n

)
=

1

n1/8
+

log(n)2

32n
.

4

The Difficulty of Approximating Nash Social Welfare in Online Matching A PREPRINT

References
G. Aggarwal, G. Goel, C. Karande, and A. Mehta. Online vertex-weighted bipartite matching and single-bid budgeted

allocations. CoRR, abs/1007.1271, 2010. URL http://arxiv.org/abs/1007.1271.

S. Barman, S. K. K. Murthy, and R. Vaish. Finding fair and efficient allocations. CoRR, abs/1707.04731, 2017. URL
http://arxiv.org/abs/1707.04731.

I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and J. Wang. The unreasonable fairness of
maximum nash welfare. ACM Trans. Econ. Comput., 7(3), 9 2019. ISSN 2167-8375. doi: 10.1145/3355902. URL
https://doi.org/10.1145/3355902.

J. Garg, M. Hoefer, and K. Mehlhorn. Approximating the nash social welfare with budget-additive valuations. CoRR,
abs/1707.04428, 2017. URL http://arxiv.org/abs/1707.04428.

J. Garg, P. Kulkarni, and R. Kulkarni. Approximating nash social welfare under submodular valuations through
(un)matchings. CoRR, abs/1912.12541, 2019. URL http://arxiv.org/abs/1912.12541.

J. Garg, E. Husić, W. Li, L. A. Végh, and J. Vondrák. Approximating nash social welfare by matching and lo-
cal search. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, page
1298–1310, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450399135. doi:
10.1145/3564246.3585255. URL https://doi.org/10.1145/3564246.3585255.

S. Gokhale, H. Sagar, R. Vaish, and J. Yadav. Approximating one-sided and two-sided nash social welfare with
capacities, 2024. URL https://arxiv.org/abs/2411.14007.

P. Jain and R. Vaish. Maximizing nash social welfare under two-sided preferences, 2023. URL
https://arxiv.org/abs/2312.09167.

R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite matching. In Proceedings
of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC ’90, page 352–358, New York,
NY, USA, 1990. Association for Computing Machinery. ISBN 0897913612. doi: 10.1145/100216.100262. URL
https://doi.org/10.1145/100216.100262.

A. Mehta. Online matching and ad allocation. Found. Trends Theor. Comput. Sci., 8(4):265–368, Oct. 2013. ISSN
1551-305X. doi: 10.1561/0400000057. URL https://doi.org/10.1561/0400000057.

5

