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1 Abstract

With the advent of large language models, the forefront of machine learning research has diverged from classi-
cal learning theory’s assumption that data is sampled independently. In a small step towards remedying this
difference, a new model for learning sequential data is introduced alongside an agnostic uniform convergence
result which aims to close the gap between traditional i.i.d.-based learning theory and the present field of
NLP.

2 Introduction

While classical learning theory has been tremendously successful at quantifying the difficulty of learning in
the regime of independent data, to the best of the author’s knowledge, there exist few examples of extensions
to the non-i.i.d. regime, and of the examples that do exist, they fail to capture the reality of learning
sequential data such as text data. For example, Hao et al. [2018] studied the task of estimating the transition
matrix of a Markov chain from samples with respect to f-divergences. While Markov chain’s can some what
approximate text data, Hao et al. [2018] does not provide a true uniform convergence result of the learning
theory style as they assume the hypothesis class G is unconstrained. Yu [1994] improves on this by providing
uniform convergence results for learning Markov chains based on the covering number of G and the β mixing
time (a slightly weaker condition then bound mixing time). However, Yu [1994] has two blind spots. First,
it is assumed that the Markov chain starts from the stationary distribution which is unrealistic of real data
and, secondly, Markov chains do not inherently capture next token generation models where the next output
has dependencies on the last several outputs. The main result of this manuscript improves in both these
regards. First, it makes no assumption on the initial distribution, and second, it proves an agnostic uniform
convergence result with respect to the task of learning next-token prediction for hypothesis classes of bound
pseudo dimension where the context length is arbitrary.

3 Preliminaries

Let V be the vocabulary—the list of tokens that are possible to output—and assume it is finite in size. For an
ordered sequence of words (v1, . . . , vm) ∈ Vm, we use the simplified notation v1:m. Moreover, for u1:n ∈ Vn,
v1:m ∪ u1:n = (v1, . . . , vm, u1, . . . , un). Let V∗ =

⋃
n∈N0

Vn. In this report, we will assume that V = {0, 1} for
the sake of analysis but we present the learning model in full generality.
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Let ∆V = {(av)v∈V ∈ [0, 1]|V||
∑

v∈V av = 1} be the probability simplex of distributions over V. The target
concept is modeled as a function f : Vm → V, with finite context length m, that produces the next token
probabilistically. Each output is distributed over V according to its (normalized) logits F : Vm → ∆V . For
simplicity we define the probability of outputting a word u given input v1:m to be (F (v1:m))u = Fu(v1:m). In
the case where V = {0, 1}, we let F (v1:m) = P[f(v1:m) = 1].

For M ∈ N, v1:M is a sample from f , if it is generated by applying f repeatedly on its own output:

∀i ∈ [M ], vi+1 = f(vi+1−m:i)

where v−m+1:0 is chosen from some arbitrary initial distribution π0.

The goal be to use such a sample to learn a model in a class of feasible models G where g ∈ G has context length
n ≤ m (i.e. g : Vn → V). For g ∈ G, We mirror the definitions of the logits, F : Vm → ∆V , Fu : Vm → [0, 1],
by defining G : Vm → ∆V , Gu : Vm → [0, 1] identically except corresponding to g instead of f .

In classical learning, the samples come from some distribution over which the error is defined. Since in
this case the labels—outputs of f—and inputs—sequences of outputs of f—are generated simultaneously,
the distribution over samples must be derived from f . The most natural such distribution is the limiting
distribution. In other words, the distribution that captures the m-gram probabilities of an infinitely long
sequence of outputs of f . To construct this distribution, we recast f as a Markov chain M on state space Vm.
Define the probability transition matrix P ∈ [0, 1]V

m×Vm

of M to be such that ∀v1:m, u1:m ∈ Vm, Pv1:m,u1:m
=∏

i∈[m] Fui(vi:m ∪ u1:i−1)—the probability that u1:m is produced given context v1:m. Set M = (Vm, P ). It is
clear to see that it is indeed a Markov chain. We will refer to it as the Markov chain induced by f . Now we
can define the limiting distribution of examples in Vm under f to be the stationary distribution of M(Vm, P ),
π, which exists under mild conditions (see section 5).

It will be useful to extend the definition of π to distributions over strings of arbitrary length. Thus for
m′ ∈ N, define π(m′) such that for all v1:m′ ∈ V∗, Pπ(m′) [v1:m′ ] = Eu1:m∼π[

∏
i∈[m′] Fvi(ui:m ∪ v1:i−1)]. This

gives us that π(n+1), the joint distribution over samples and labels.

Now we can finally define the error. A natural objective for sequence learning is minimizing the L2 distance
between f and g ∈ G’s outputs, as seen in chapter 16 of Anthony and Bartlett [2009], so we set the error to
be:

er(f, g) = E
v1:m∼π

[∥F (v1:m)−G(vm−n+1:m)∥22].

Thus, the goal of a learning algorithm is to take in a sample from f , and output some g ∈ G which ap-
proximately minimizes the error with respect to f . This type of algorithm is dubbed a sequential learning
algorithm:

Definition 1. An algorithm L outputting in G is a sequence learning algorithm for f : Vm → V if for all
ϵ, δ ∈ (0, 1), there exists an integer M0(ϵ, δ) such that if L receives a sample from f of length M ≥ M0(ϵ, δ)
then:

P[erπ(f,L) ≤ inf
g∈G

erπ(f, g) + ϵ] ≥ 1− δ

where the probability is over the sample and L’s internal randomness.
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4 Main Result

Given this new model of learning, one of the most natural questions to ask is: what is the sample complexity
of an empirical risk minimizing algorithm for sequential learning? Before we can answer this, it first needs
to be decided what the empirical risk even is. The following observation shows that the finite sample loss
that an ERM algorithm should minimize over G need only be dependent on n + 1 token sequences—unlike
the target function f which is dependent on the last m tokens. Recall that π(n+1) is a joint distribution over
v1:n ∈ Vn and its label vn+1.

Observation 2. For Z(i∈N) ∼ π(n+1) i.i.d:

arg inf
g∈G

er(f, g) = arg inf
g∈G

E
v1:m∼π

[G2(vm−n+1:m)− 2F (v1:m)G(vm−n+1:m)]

= arg inf
g∈G

lim
M→∞

1

M

∑
i∈[M ]

G2(Z
(i)
1:n)−

2

M

∑
i∈[M ]

Z
(i)
n+1 ·G(Z

(i)
1:n)

Therefore, for any X(i∈N) ∈ Vn+1, we define:

êr(X(1), . . . , X(M), g) ≡ 1

M

∑
i∈[M ]

G2(X
(i)
1:n)−

2

M

∑
i∈[M ]

X
(i)
n+1 ·G(X

(i)
1:n)

and:
er(f, g) = E

v1:m∼π
[G2(vm−n+1:m)− 2F (v1:m)G(vm−n+1:m)].

Before presenting the uniform convergence result, we define the key parameter that captures how predictable
the output of f is:

Definition 3. Let dTV be the total variation distance. For any target concept f : Vm → V, if the sequence
of random variables v1, v2, v3, . . . is a sample from f , then the (n, ξ)-mixing time of f is:

Tn(ξ) = min{t ≥ 0 : ∀i ≥ 0 max
u0:n∈Vn+1

dTV (P[vi+t:i+n+t ∈ · |vi:i+n = u0:n], π
(n+1)) ≤ ξ}

Now we present the main result of this section:

Theorem 4. Let G be a hypothesis space of functions from Vn to V = {0, 1} and f : Vm → V be any
target concept with (n, ϵδ

6 )-mixing time at most T < ∞. If d < ∞ is the pseudo dimension of êrG ≡
{êrg(v1:n, vn+1) = G2(v1:n)− 2vn+1G(v1:n) : g ∈ G} and

M ′ ≥ max(m,n+ 1 + T )

(
256

ϵ2

(
2d ln

(
32e

ϵ

)
+ ln

(
18

δ

))
+ 1

)
then, for any v1, . . . , vM ′ sampled from f with arbitrary initial distribution π0, there exists a subsample of
v1:M ′ , X(1), . . . , X(M) ∈ Vn+1, such that:

P[∀g ∈ G, it holds that |êr(X(1), . . . , X(M), g)− er(f, g)| ≤ ϵ] ≥ 1− δ

where the probability is over the generation of v1, . . . , vM ′ .
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The key observation behind this proof is that any sequence of weakly dependent-data can be related to a
carefully constructed set of i.i.d samples:

Lemma 5. If X(0), . . . , X(M) ∈ Vn+1 form a Markov chain such that for all i ∈ [1,M ]:

max
v0:n∈Vn+1

dTV (P[X(i) ∈ · |X(i−1) = v0:n], π
(n+1)) ≤ ξ

then there exist Z(1), . . . , Z(M) i.i.d from π(n+1) with for all i ∈ [M ]:

P[Z(i) ̸= X(i)] ≤ ξ

2

Proof of lemma 5. For all i ∈ [1,M ], consider the random variable (X(i−1), Z(i)) such that Z(i) ∼ π(n+1) is
independent of X(i−1). By theorem 2.12 of den Hollander [2012], there exists a joint distribution, λi over
(X(i−1), X(i)), (X(i−1), Z(i)) such that:

dTV ((X
(i−1), X(i)), (X(i−1), Z(i))) = 2P[(X(i−1)X(i)) ̸= (X(i−1), Z(i))].

By the assumption on X(1), . . . , X(M) and construction of λi:

P[X(i) ̸= Z(i)] =
1

2
dTV ((X

(i−1), X(i)), (X(i−1), Z(i)))

=
1

4

∑
v0:n,u0:n∈Vn+1

|P[X(i−1) = v0:n]P[X(i) = u0:n|X(i−1) = v0:n]

− P[X(i−1) = v0:n]π
(n+1)(u0:n)|

≤ 1

4
max

v0:n∈Vn+1

∑
u0:n∈Vn+1

|P[X(i) = u0:n|X(i−1) = v0:n]− π(n+1)(u0:n)|

=
1

2
max

v0:n∈Vn+1
dTV (P[X(i) ∈ ·|X(i−1) = v0:n], π

(n+1))

≤ ξ

2
.

Now we verify that the induced distribution over Z(1), . . . , Z(M) is indeed the i.i.d distribution π(n+1)×· · ·×
π(n+1). By the Markov property, each X(i) is independent of the past given X(i−1) and, by construction,
Z(i) is only dependent on X(i) (since it is independent of X(i−1)). Let λi|X(i) be the distribution over Z(i)

given X(i). Given X(1), . . . , X(M), sample Z(1), . . . , Z(M) from λ1|X(1) × · · · × λM |X(M). Then for any sets
A1, . . . , AM ⊆ Vn+1:

P[Z(1) ∈ A1, . . . , Z
(M) ∈ AM ]

= E
X(1),...,X(M)

[P[Z(1) ∈ A1, . . . , Z
(M) ∈ AM |X(1), . . . , X(M)]]

= E
X(1),...,X(M)

[ P
Z(1)∼λ1|X(1)

[Z(1) ∈ A1] · · · P
Z(M)∼λM |X(M)

[Z(M) ∈ AM ]]

= E
X(1),...,X(M−1)

[ P
Z(1)∼λ1|X(1)

[Z(1) ∈ A1] · · · P
Z(M−1)∼λ1|X(M−1)

[Z(M−1) ∈ AM−1]

E
X(M)

[ P
Z(M)∼λM |X(M)

[Z(M) ∈ AM ]|X(M−1)]].
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By design of λM , we get that:

= E
X(1),...,X(M−1)

[ P
Z(1)∼λ1|X(1)

[Z(1) ∈ A1] · · · P
Z(M−1)∼λ1|X(M−1)

[Z(M−1) ∈ AM−1]]

P
Z(M)∼π(n+1)

[Z(M) ∈ AM ]

and by induction:

= P
Z(1)∼π(n+1)

[Z(1) ∈ A1] · · · P
Z(M)∼π(n+1)

[Z(M) ∈ AM ].

Now we prove Theorem 4:

Proof of theorem 4. The proof proceeds by reducing a sample v1:M ′ produced by f to a smaller i.i.d sample
from the stationary distribution such that the empirical error is close to the original. To finish the proof,
established results in learning theory are applied.

Let K = max(m,n+ 1 + T ), M ′ ≥ K
(
256
ϵ2

(
2d ln

(
32e
ϵ

)
+ ln

(
18
δ

))
+ 1

)
and M = ⌊M ′/K⌋ − 1.

Let v1, . . . , vM ′ be the sample generated by f with initial distribution π0. Split this sample into chunks of
length K : X̃(0), . . . , X̃(M) where X̃(i) = vKi+1:K(i+1). We define the sub-sample X(0), . . . , X(M) of X̃(0), . . . ,

X̃(M) such that X(i) is the first n+1 bits of each section, i.e. X(i) = X̃
(i)
1:n+1. By construction, X(0), . . . , X(M)

satisfies the conditions of lemma 5 (note that it is a Markov chain because X̃(0), . . . , X̃(M) is a Markov chain)
so there there exist Z(1), . . . , Z(M) i.i.d from π(n+1) with P[Z(i) ̸= X(i)] ≤ ϵδ

12 . Crucially, this last property
gives us that all g ∈ G have similar error on the weakly dependent samples as they would on independent
samples. Denote Z = {Z(1), . . . , Z(M)} and X = {X(1), . . . , X(M)}. Then:

P
[
∃g ∈ G s.t. |êr(X, g)− êr(Z, g)| < ϵ

2

]
≥ 1− δ

2
.

Indeed:

sup
g∈G

|êr(X, g)− êr(Z, g)| = sup
g∈G

∣∣∣∣∣∣ 1M
∑
i∈[M ]

G2(Z
(i)
1:n)−G2(X

(i)
1:n)− 2Z

(i)
n+1G(Z

(i)
1:n) + 2X

(i)
n+1G(X

(i)
1:n)

∣∣∣∣∣∣
≤ sup

g∈G

1

M

∑
i∈[M ]

∣∣∣G2(Z
(i)
1:n)−G2(X

(i)
1:n)− 2Z

(i)
n+1G(Z

(i)
1:n) + 2X

(i)
n+1G(X

(i)
1:n)

∣∣∣
≤ 1

M

∑
i∈[M ]

31[Z(i) ̸= X(i)]
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where in the last inequality we use the fact that 0 ≤ G,Z
(i)
n+1, X

(i)
n+1 ≤ 1. By a simple Markov inequality:

P
[
∃g ∈ G s.t. |êr(X, g)− êr(Z, g)| ≥ ϵ

2

]
≤ P

 3

M

∑
i∈[M ]

1[Z(i) ̸= X(i)] ≥ ϵ

2


≤ 6

ϵM

∑
i∈[M ]

P[Z(i) ̸= X(i)] ≤ δ

2

To finish the proof, the above is used to show that if learning on X fails then learning on Z must fail as well.
Suppose there exists g ∈ G such that |er(f, g)− êr(X, g)| ≥ ϵ and ∀g ∈ G |êr(X, g)− êr(Z, g)| ≤ ϵ

2 , then by
triangle inequality it holds that |er(f, g)− êr(Z, g)| ≥ ϵ

2 . Hence:

P[∃g ∈ G s.t |er(f, g)− êr(X, g)| ≥ ϵ] ≤ P
[
∃g ∈ G s.t |er(f, g)− êr(Z, g)| ≥ ϵ

2

]
+ P

[
∃g ∈ G s.t. |êr(X, g)− êr(Z, g)| ≥ ϵ

2

]
.

By the above calculations and theorem 5.1 of Kearns and Schapire [1990], sinceM ≥ 256
ϵ2

(
2d ln

(
32e
ϵ

)
+ ln

(
18
δ

))
then:

P[∃g ∈ G s.t |er(f, g)− êr(X, g)| ≥ ϵ] ≤ δ

2
+

δ

2
= δ.
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5 Appendix: A Quick Note on the Existence of a Stationary Dis-
tribution of M

M has a unique stationary distribution if it is aperiodic and irreducible. In other words, M can go from any
state to any other state in finite time (irreducible) and it does not follow a periodic pattern (aperiodic). For
these conditions to be met, it is sufficient that Fu(v1:m) is every so slightly larger than 0 for all u ∈ V and
v1:m ∈ V. This often holds in practice as models usually do not return exactly 0 for any logits. Indeed if this
holds, M is clearly irreducible, and to see that M is aperiodic consider that for some v ∈ V, Fv(v, v, . . . , v) > 0
hence all states must have period 1.

It will also be useful to note that if M has a stationary distribution, the stationary distribution is also its
limiting distribution, i.e. for any initial distribution (represented as a vector) π0 ∈ [0, 1]V

m

:

π = lim
M→∞

PMπ0.

Thus, it is still possible to construct a reasonable “limiting” distribution π if M is not irreducible or aperiodic.
For one, since Vm is finite, M has at least one recurrent class which implies that we can ignore any v1:m ∈ Vm

which are outside this class as the probability they will appear in a sequence generated by f goes to 0 as the
sequence length increases. Hence, M can be assumed to be irreducible if we simply restrict ourselves to this
recurrent class. Further, if F is periodic with some period ρ (which must be finite since at least one state in
the irreducible class is recurrent) then we can redefine P to be the ρ step transition matrix (i.e. P 7→ P ρ)
which will be aperiodic. Thus π can be defined as the distribution over the recurrent class (again represented
as a vector) such that P ρπ = π.
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